Небесна механика

Од Википедија — слободната енциклопедија
Прејди на прегледникот Прејди на пребарувањето

Небесна механика е гранка на астрономијата која се занимава со движењата на небесните тела. Исторично,небесната механика ги применува законите од физиката(механика)на астрономски објекти,како ѕвезди и планети, за да се добие информации за нивната положба.Исторично небесната механика ги применува принципите од физиката(класична механика) на астрономски објекти,како ѕвезди и планети за да ги предвиди нивните положби во текот на годината.како и полиња од Орбитална механика(астродинамика), која ги проучува орбитите на вештачките сателити и Лунарната теорија која ја проучува орбитата на месечината.

Историја на небесна механика[уреди | уреди извор]


Модерната аналитичка небесна механика започнала пред повеќе од 329 години принципот од 1687 на Исак Њутн.Името небесна механика е понов од тоа. Њутн напишал дека полето треба да се вика рационална механика. Терминот динамика пристигнал со мало писмо со Готфрид Лајбниц , и по повеќе од еден век по Њутон, Пјер Симон Лаплас го претставил терминот небесна механика.

Јоханес Кеплер[уреди | уреди извор]


Неговата работа не донела до современите закони на планетарни орбити, кои ги создал користејќи ги неговите физички принципи и планетарнинабљудувања од Тихо Брахе. Кеплеровиот модел многу ја подобрил прецизноста на предвидувањата на планетарното движење, години пред Исак Њутн го создал својот закон за гравитација во 1686.

Исак Њутн Isaac Newton

Исак Њутн(25 декември 1642-31 Март 1727) е заслужен за идејата дека движењето на објектите во небесата, како планети, сонцето,месечината, и движењето на Земјата како ѓулиња и јаболка што паѓаат, може да се опишат со истите физички закони. Тој ги соединил небесна и земјена динамика.Користејќи го Њутновиот закон за универзална гравитација,докажувајќи дека Кеплеровиот закон за кружна орбита е едноставен. Елиптичните орбити вклучуваат по сложени пресметки, кои Њутн ги вклучил во неговиот принцип.

Јозеф Луј Лагранж[уреди | уреди извор]

По Њутн Лагранж(25 јануари 1736-10 април 1813) пробал да го реши проблемот со 3 тела,анализирајќи ја стабилноста на планетарните орбити, и го открил постоењето на Лаграниани точки.

Лагранж исто така ги реформулирал принципите на класичната механика, нагласувајќи ја енергијата повеќе од силата и создавајќи митод за користење единствена поларно координатна равенка за да се опише орбита , дури и тие што се параболични и хиперболични.Ова е корисно за да се пресмета однесувањето на планетите, кометите и сл. Скорешно исто така стана корисно и за пресметување на траекториите на вселенските возила.

Сајмон Њукомб[уреди | уреди извор]

Сајмон Њукомб (12 Март 1835-11 јули 1909) бил Канадо-Американски астроном кој ја проучувал табелата на Петар Андреас Хансен за лунарни позиции. Во 1877 поддржан од Џорџ Вилијам Хил, повторно ги пресметал поважните астрономски константи.По 1884, тој соработувал со A.M.W. правејќи план да се решат многуте интернационални недоразбирања на оваа тема.Додека да присуствува на конференцијата за стандардизација во Парис,Франција во мај 1886 интернационалниот консенсус решил дека сите ефемериди дреба да се засновани на пресметките на Њукомб. На понатамошна конференција во 1950 ги потврдиле константите на Њукомб како интернационален стандард.

Алберт Ајнштајн[уреди | уреди извор]

Алберт Ајнштајн (14 Март 1879-18 Април 1955) ја објаснил аномалната прецесија на Меркуровиот перихел во неговото дело од 1916 за основата на генералната теорија за релативност. Ова ги довело астрономите да препознаат дека Њутновата механика не ја снабдува најголемата прецизност. Биле набљудувани бинарни пулсари, првиот во 1974, чии орбити не само што имале потреба од генерална релативност за да бидат објаснети , туку нивната еволуција го докажува постоењето на гравитационална радијација, откритие кое довело до Нобеловата Награда за Физика во 1993.

Теорија на Хаосот[уреди | уреди извор]

Теоријата на хаосот се состои од математички методи кои се користат да се открие приближното решение на проблемите кои неможат точно да се решат. (Блиску е поврзано со нумеричка анализа,која е античка)Нај раната употреба на теоријата на хаосот е за да ги реши проблемите од небесна механика кои инаку би биле нерешливи:Њутновото решение за орбитата на Месечината,која се движи забележливо поразлично од едноставна Кеплерова елипса порадигравитацијата на Земјата и Сонцето кои се противат.

Методите на хаосот започнуваат поедноставена форма од оригиналниот проблем,кој е внимателно избран за да биде точно решен.Во небесна механика,ова вообичаено е Кеплерова елипса,која е точна кога има само 2 гравитациони тела(како Земјата и Месечината)или кружна орбита која е точна само во случаи во кои има движење на само 2 тела, но ова е често доволно прецизно за практична примена. Решениот но решен проблем а потоа "растревожен" за кондицијалите да бидат поблиски до реалниот проблем, како вклучувајќи ја гравитацијата на трето тело(како Сонцето)..Најмалите промени можат и самите да бидат поедноставени и да бидат искористени како корекции. Бидејќи поеднастувањата не запознаваат со секој чекор од патот,корекциите никогаш не се перфектни,но и само еден циклус од корекции често придонесува зачудувачки подобро приближно решение на вистинскиот проблем.

Не е задолжително да се запре по еден циклус од корекции.Делумно корегиран проблем може поврорно да се искористи како почетна точка за нареден циклус од корекции.Честата тешкотија со методот е што со корекциите постепено решението станува се по комплетно,па секој циклус е се потежок за справување од претходниот.Њутон во врска со проблемот на орбитата на Месечината рекол"Направи да ме боли главата"

Оваа генерална процедура- започнувајќи со поедноставен проблем па постепено додавајќи корекции кои ја прават почетната точка на корегиран проблем кој е поблизу до вистинската ситуација-ова е широко користена математичка алатка во напредни науки и инжинерството.Тоа е природно проширување на "Нагаѓај,провери, и поправи" методот користен во антиката со бројки.

Види исто така[уреди | уреди извор]

Белешки[уреди | уреди извор]

Додатна литература[уреди | уреди извор]

Надворешни линкови[уреди | уреди извор]

  • Calvert, James B. (2003-03-28), Celestial Mechanics, University of Denver, конс. 2006-08-21 
  • Astronomy of the Earth's Motion in Space, high-school level educational web site by David P. Stern
  • Newtonian Dynamics Undergraduate level course by Richard Fitzpatrick. This includes Langrangian and Hamiltonian Dynamics and applications to celestial mechanics, gravitational potential theory, the 3-body problem and Lunar motion (an example of the 3-body problem with the Sun, Moon, and the Earth).