Кварк: Разлика помеѓу преработките

Од Википедија — слободната енциклопедија
[непроверена преработка][непроверена преработка]
Избришана содржина Додадена содржина
сНема опис на уредувањето
сНема опис на уредувањето
Ред 1: Ред 1:
{{Без извори|датум=ноември 2009}}
{{Без извори|датум=ноември 2009}}
'''Кварковите''', заедно со [[лептон]]ите, се градбените единки на [[материја]]та, односно тие се [[Елементарна честичка|елементарни честички]]. Во сегашниот стандарден модел постојат шест типови на кваркови. Кварковите се составни единки на сите познати [[мезон]]и и [[барион]]и. Најпознати бариони се [[протон]]от и [[неутрон]]от, кои се изградени од ''up'' и ''down'' кварки. Кварките можат да се наоѓаат само во комбинации од два (мезони), три (бариони) и најново откриените честички со пет кварка ([[пентакварк]]ови).
'''Кварковите''', заедно со [[лептон]]ите, се градбените единки на [[материја]]та, односно тие се [[Елементарна честичка|елементарни честички]]. Во сегашниот стандарден модел постојат шест типови на кваркови. Кварковите се составни единки на сите познати [[мезон]]и и [[барион]]и. Најпознати бариони се [[протон]]от и [[неутрон]]от, кои се изградени од ''горни'' и ''долни'' кваркови. Кварковите можат да се наоѓаат само во комбинации од два (мезони), три (бариони) и најново откриените честички со пет кварка ([[пентакварк]]ови).


::::{| border="1" cellspacing="0" cellpadding="5"
::::{| border="1" cellspacing="0" cellpadding="5"
Ред 6: Ред 6:
! Кварк || Симбол || [[Спин]] || [[Електричен полнеж|Полнеж]] || [[Барионски број]] || S || C || B || T || Маса ([[MeV]])
! Кварк || Симбол || [[Спин]] || [[Електричен полнеж|Полнеж]] || [[Барионски број]] || S || C || B || T || Маса ([[MeV]])
|-
|-
| [[Up кварк]] || U || ½ || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || 0 || 360
| [[Горен кварк]] || U || ½ || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || 0 || 360
|-
|-
| [[Down кварк]] || D || ½ || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || 0 || 360
| [[Долен кварк]] || D || ½ || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || 0 || 360
|-
|-
| [[Charm кварк]] || C || <sup>1</sup>/<sub>2</sub> || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || +1 || 0 || 0 || 1500
| [[Шарманетен кварк]] || C || <sup>1</sup>/<sub>2</sub> || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || +1 || 0 || 0 || 1500
|-
|-
| [[Strange кварк]] || S || <sup>1</sup>/<sub>2</sub> || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || -1 || 0 || 0 || 0 || 540
| [[Чуден кварк]] || S || <sup>1</sup>/<sub>2</sub> || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || -1 || 0 || 0 || 0 || 540
|-
|-
| [[Top кварк]] || T || <sup>1</sup>/<sub>2</sub> || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || +1 || 174
| [[Врвен кварк]] || T || <sup>1</sup>/<sub>2</sub> || +<sup>2</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || 0 || +1 || 174
|-
|-
| [[Bottom кварк]] || B || <sup>1</sup>/<sub>2</sub> || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || +1 || 0 || 5
| [[Најнизок кварк]] || B || <sup>1</sup>/<sub>2</sub> || -<sup>1</sup>/<sub>3</sub> || <sup>1</sup>/<sub>3</sub> || 0 || 0 || +1 || 0 || 5
|}
|}


Ред 29: Ред 29:
== Типови на кваркови ==
== Типови на кваркови ==


=== ''Up'' и ''Down'' кваркови ===
=== ''Горни'' и ''долни'' кваркови ===


Up и Down кварковите се најчестите и најмалку масовните кваркови кои се составен дел на протоните и неутроните, а со тоа и на обичната материја. Фактот што слободниот неутрон се распаѓа:
Горните и долните кваркови се најчестите и најлесните кваркови (т.е. со најмала маса) кои се составен дел на протоните и неутроните, а со тоа и на обичната материја. Фактот што слободниот неутрон се распаѓа:


:::::<math>\mbox{n} \to \mbox{p} + \mbox{e}^- + \mbox{v}_e</math>
:::::<math>\mbox{n} \to \mbox{p} + \mbox{e}^- + \mbox{v}_e</math>
Ред 45: Ред 45:
=== ''Strange'' кварк ===
=== ''Strange'' кварк ===


Во [[1947]], за време на проучувањето на интеракциите меѓу космичките зраци, беше пронајден продукт на протонската колизија со атомско јадро. Тој постоел многу подолго отколку што се очекувало: 10<sup>-10</sup> секунди наместо очекуваните 10<sup>-23</sup> секунди. Оваа честичка била именувана како ламбда честичка ([[Ламбда барион|&lambda;<sup>0</sup>]]), а својството кое причинувало таа да опстојува ("живее") толку долго било наречено "чудно (strangeness)". Поради ова, еден од кварковите кои се составен дел на ламбда честичката е именуван како "strange кварк". Ламбда честичката е барион кој се состои од три кварка: еден up, еден down и еден strange кварк.
Во [[1947]], за време на проучувањето на интеракциите меѓу космичките зраци, беше пронајден продукт на протонската колизија со атомско јадро. Тој постоел многу подолго отколку што се очекувало: 10<sup>-10</sup> секунди наместо очекуваните 10<sup>-23</sup> секунди. Оваа честичка била именувана како ламбда честичка ([[Ламбда барион|&lambda;<sup>0</sup>]]), а својството кое причинувало таа да опстојува ("живее") толку долго било наречено "чудно (strangeness)". Поради ова, еден од кварковите кои се составен дел на ламбда честичката е именуван како "strange кварк". Ламбда честичката е барион кој се состои од три кварка: еден горен, еден долен и еден чуден кварк.


Пократкото животно време од 10<sup>-23</sup> секунди било очекувано бидејќи ламбда како барион учествува во силни интеракции, а тоа обично доведува до многу мало животно време. Долгиот животен век на ламбда честичката помогнал во развивањето на нов закон за зачувување на енергијата наречен "зачувување на чудното" ("conservation of strangeness"). Присуството на strange кварк во една честица е обележано со [[квантен број]] S=-1. Распаѓањето на честицата под дејство на силни или [[Електромагнетизам|електромагнетни]] интеракции го зачувуваат квантниот број на strangeness. Процесот на распаѓање на ламбда мора да го наруши тоа правило, бидејќи не постои полесна честица која содржи strange кварк - така што s-кваркот мора да биде трансформиран во друг кварк во процесот. Тоа може да се постигне само под дејство на слабите интеракции, што доведува до многу поголемо животно време. Процесот на распаѓање покажува дека strangeness не е конзервиран (зачуван):
Пократкото животно време од 10<sup>-23</sup> секунди било очекувано бидејќи ламбда како барион учествува во силни интеракции, а тоа обично доведува до многу мало животно време. Долгиот животен век на ламбда честичката помогнал во развивањето на нов закон за зачувување на енергијата наречен "зачувување на чудното" ("conservation of strangeness"). Присуството на чуден кварк во една честица е обележано со [[квантен број]] S=-1. Распаѓањето на честицата под дејство на силни или [[Електромагнетизам|електромагнетни]] интеракции го зачувуваат квантниот број на strangeness. Процесот на распаѓање на ламбда мора да го наруши тоа правило, бидејќи не постои полесна честица која содржи чуден кварк - така што s-кваркот мора да биде трансформиран во друг кварк во процесот. Тоа може да се постигне само под дејство на слабите интеракции, што доведува до многу поголемо животно време. Процесот на распаѓање покажува дека strangeness не е конзервиран (зачуван):


:::::<math>\mbox{\lambda}^0 \to \mbox{p} + \mbox{\pi}^-</math>:::::<math>\mbox{\lambda}^0 \to \mbox{n} + \mbox{\pi}^0</math>
:::::<math>\mbox{\lambda}^0 \to \mbox{p} + \mbox{\pi}^-</math>:::::<math>\mbox{\lambda}^0 \to \mbox{n} + \mbox{\pi}^0</math>


[[Омега минус|&omega;-минус]], барион составен од три strange кварка, е класчен пример од потребата за својството наречено "боја" при опишувањето на честиците. Бидејќи кварковите се [[фермион]]и со спин од 1/2, тие мора да се покоруваат на [[Паулиев принцип|Паулиевиот принцип на исклучување]] и неможат да постојат во идентични состојби. Значи, во честица со три strange кваркови, својството по кое тие се разликуваат мора да биде способно да има барем три различни вредности.
[[Омега минус|&omega;-минус]], барион составен од три чуден кварка, е класчен пример од потребата за својството наречено "боја" при опишувањето на честиците. Бидејќи кварковите се [[фермион]]и со спин од 1/2, тие мора да се покоруваат на [[Паулиев принцип|Паулиевиот принцип на исклучување]] и неможат да постојат во идентични состојби. Значи, во честица со три чудни кварка, својството по кое тие се разликуваат мора да биде способно да има барем три различни вредности.


=== ''Charm'' кварк ===
=== ''Charm'' кварк ===
Ред 57: Ред 57:
Во [[1974]] беше откриен мезон наречен [[J/Psi честица]]. Со маса од 3100 MeV, три пати поголема од таа на протонот, оваа честица беше првиот пример на друг кварк наречен charm кварк. J/Psi се состои од шарм-антишарм кварков пар.
Во [[1974]] беше откриен мезон наречен [[J/Psi честица]]. Со маса од 3100 MeV, три пати поголема од таа на протонот, оваа честица беше првиот пример на друг кварк наречен charm кварк. J/Psi се состои од шарм-антишарм кварков пар.


Најлесниот мезон што содржи charm кварк е [[D мезон]]от. Тој дава интересни примери на распаѓање, бидејќи charm кваркот мора да биде трансформиран во strange кварк од страна на слабите интеракции пред да се распадне.
Најлесниот мезон што содржи charm кварк е [[D мезон]]от. Тој дава интересни примери на распаѓање, бидејќи charm кваркот мора да биде трансформиран во чуден кварк од страна на слабите интеракции пред да се распадне.


Еден барион со charm кварк е наречен ламбда со симбол Λ<sup>+</sup><sub>c</sub>. Тој се состои од udc и има маса од 2281 MeV/c².
Еден барион со шармантен кварк е наречен ламбда со симбол Λ<sup>+</sup><sub>c</sub>. Тој се состои од udc и има маса од 2281 MeV/c².


[[Категорија:Елементарни честици]]
[[Категорија:Елементарни честици]]

Преработка од 10:58, 11 декември 2009

Кварковите, заедно со лептоните, се градбените единки на материјата, односно тие се елементарни честички. Во сегашниот стандарден модел постојат шест типови на кваркови. Кварковите се составни единки на сите познати мезони и бариони. Најпознати бариони се протонот и неутронот, кои се изградени од горни и долни кваркови. Кварковите можат да се наоѓаат само во комбинации од два (мезони), три (бариони) и најново откриените честички со пет кварка (пентакваркови).

Кварк Симбол Спин Полнеж Барионски број S C B T Маса (MeV)
Горен кварк U ½ +2/3 1/3 0 0 0 0 360
Долен кварк D ½ -1/3 1/3 0 0 0 0 360
Шарманетен кварк C 1/2 +2/3 1/3 0 +1 0 0 1500
Чуден кварк S 1/2 -1/3 1/3 -1 0 0 0 540
Врвен кварк T 1/2 +2/3 1/3 0 0 0 +1 174
Најнизок кварк B 1/2 -1/3 1/3 0 0 +1 0 5

Во табелата, масите на кварките не треба да се сфаќаат премногу сериозно, бидејќи ограниченоста на кварковите укажува дека нивната маса неможе директно да се определи. Масите на овие честички мораат да се измерат индиректно преку експерименти.

Секој од шесте типа на кваркови може да има три различни "бои". Кварковите сили се привлечни само во безбојни комбинации на три кварки (бариони), кварк-антикварк парови (мезони) и веројатно поголеми комбинации, како што е пентакваркот, кој исто така може да се најде во безбојни услови. Кварковите подлежат на трансформации со размена на W-бозони, а овие трансформации го детерминираат степенот и природата на распадот на хадроните од страна на слабите меѓуакции.

Име

Името "кварк" беше земено од книгата на Џејмс Џојс Finnegan's Wake од страна на Американскиот физичар Мари Гел-Ман. Овој научник ја доби Нобеловата награда во 1969 година за неговата работа во класификацијата на елементарните честички.

Типови на кваркови

Горни и долни кваркови

Горните и долните кваркови се најчестите и најлесните кваркови (т.е. со најмала маса) кои се составен дел на протоните и неутроните, а со тоа и на обичната материја. Фактот што слободниот неутрон се распаѓа:

како и тоа што јадрото се распаѓа со β распаѓање во процесите како:

доведува до сознанието дека тоа е резултат од еден пофундаментален кварков процес:

Strange кварк

Во 1947, за време на проучувањето на интеракциите меѓу космичките зраци, беше пронајден продукт на протонската колизија со атомско јадро. Тој постоел многу подолго отколку што се очекувало: 10-10 секунди наместо очекуваните 10-23 секунди. Оваа честичка била именувана како ламбда честичка (λ0), а својството кое причинувало таа да опстојува ("живее") толку долго било наречено "чудно (strangeness)". Поради ова, еден од кварковите кои се составен дел на ламбда честичката е именуван како "strange кварк". Ламбда честичката е барион кој се состои од три кварка: еден горен, еден долен и еден чуден кварк.

Пократкото животно време од 10-23 секунди било очекувано бидејќи ламбда како барион учествува во силни интеракции, а тоа обично доведува до многу мало животно време. Долгиот животен век на ламбда честичката помогнал во развивањето на нов закон за зачувување на енергијата наречен "зачувување на чудното" ("conservation of strangeness"). Присуството на чуден кварк во една честица е обележано со квантен број S=-1. Распаѓањето на честицата под дејство на силни или електромагнетни интеракции го зачувуваат квантниот број на strangeness. Процесот на распаѓање на ламбда мора да го наруши тоа правило, бидејќи не постои полесна честица која содржи чуден кварк - така што s-кваркот мора да биде трансформиран во друг кварк во процесот. Тоа може да се постигне само под дејство на слабите интеракции, што доведува до многу поголемо животно време. Процесот на распаѓање покажува дека strangeness не е конзервиран (зачуван):

Не можев да расчленам (синтаксна грешка): {\displaystyle \mbox{\lambda}^0 \to \mbox{p} + \mbox{\pi}^-} :::::Не можев да расчленам (синтаксна грешка): {\displaystyle \mbox{\lambda}^0 \to \mbox{n} + \mbox{\pi}^0}

ω-минус, барион составен од три чуден кварка, е класчен пример од потребата за својството наречено "боја" при опишувањето на честиците. Бидејќи кварковите се фермиони со спин од 1/2, тие мора да се покоруваат на Паулиевиот принцип на исклучување и неможат да постојат во идентични состојби. Значи, во честица со три чудни кварка, својството по кое тие се разликуваат мора да биде способно да има барем три различни вредности.

Charm кварк

Во 1974 беше откриен мезон наречен J/Psi честица. Со маса од 3100 MeV, три пати поголема од таа на протонот, оваа честица беше првиот пример на друг кварк наречен charm кварк. J/Psi се состои од шарм-антишарм кварков пар.

Најлесниот мезон што содржи charm кварк е D мезонот. Тој дава интересни примери на распаѓање, бидејќи charm кваркот мора да биде трансформиран во чуден кварк од страна на слабите интеракции пред да се распадне.

Еден барион со шармантен кварк е наречен ламбда со симбол Λ+c. Тој се состои од udc и има маса од 2281 MeV/c².