Рамен агол
Рамен агол | |
---|---|
Рамен агол α има 180o = π ≈ 3,1416 | |
Тип | агол во рамнина (2д) |
Поддршка | самостоен |
Во елементарната геометрија, рамен агол е агол чија ротација е половина кружница. Значи, краците на рамен агол формираат права линија, а темето на рамен агол е точка на правата. Куржниот лак со што се означува рамен агол е полукружница. Внатрешниот дел од рамен агол е половина рамнина.[1][2]
- Рамен агол има сто и осумдесет степени, односно е еднаков на 180o.
- Рамен агол има π радијани, односно е еднаков на π.
Рамен агол:
Одлики во елементарна геометрија
[уреди | уреди извор]- Рамен агол има 180o. Доказ: Полн агол, т.е. цела кружница има 360°. Рамен агол е половина кружница, односно ½(360°)=180°.
- Конструкција на рамен агол: Се црта права линија која не мора да е хоризонтална. Се означува точка на неа како темето. Со шестар се црта полукружница со центарот во темето од било која страна на правата. Се пиши некоја ознака над лакот како на пример α=180°.
- Ако рамен агол се поделува на два агли со полуправа, тогаш формираните два напоредни агли се суплементни агли.
- Збирот на внатрешните агли на еден триаголник формираат рамен агол (види триаголник).
Стандардна позиција
[уреди | уреди извор]Во декартов правоаголен координатен систем, аголoт α е во стандардна позиција ако темето е О(0,0), а почетниот крак е позитивниот дел од х-оска. Крајниот крак се добива по ротација за големината на α во насоката спротивен на стрелките на часовникот.
- Крајниот крак на рамен агол во стандардна позиција е негативниот дел од х-оската, односно се наоѓа помеѓу II-иот и III-иот квадрант. Лакот е (било која) полукружница во горниот дел од рамнината со центар во О(0,0), а насоката на лакот почнува на позитивниот дел од x-оската, а завршува на негативниот дел од x-оската.
- Складни агли во степени: 180°=-180°. Доказ: -180°=-180°+360°=180°.
- Складни агли во радијани: π=-π. Доказ: -π=-π+2π=π. (Оваа равенка важи само за агли. Се разбира дека како броеви; π≠-π. Формално, треба да се користи знакот за складност, односно π≅-π.)
Триаголник во единична кружница со агол α=180o е дегенериран триаголник. |
Тригонометрија
[уреди | уреди извор]- Референтниот агол за рамен агол од 180o е празен агол од 0o.
- Во тригонометријата, соодветниот триаголник во едничната кружниа со рамен агол е дегенериран правоаголен триаголник. (Дегенериран триаголник е триаголник каде што едната страна има нула должина така да е сплеснат. Автроматско, внатрешните агли на дегенериран триаголник се 90o, 90o, и 0o. Дегенерирани триаголници се наоѓа при празен 0o, прав 90o, рамен 180o, 270o и полн 360o агол.)
Кај рамен агол, крајната точка на хипотенузата c е (-1,0). Оваа точка лежи на негативниот дел од х-оската. Значи крајната точка на легната (соседната) страна b e (-1,0), оваа легната страна и хипотенузата се преклопуваат и b=-1. Триаголникот нема висинa, односно спротивната страна a=0. Се разбира дека хипотенузата е полупречник c=1 (види слика).[3]
α | |
sin(α) | |
cos(α) | |
tan(α) |
Доказ: .
Наводи
[уреди | уреди извор]- ↑ „Straight angle“. Math Open Reference. 2009. Посетено на 1 December 2013. interactive
- ↑ Bogomolny, A. (2010). „Angles“ (англиски). Посетено на 1 декември 2013. интерактивeн
- ↑ Weisstein, Eric W. „Trigonometry Angles--Pi“ (англиски). From MathWorld--A Wolfram Web Resource. Посетено на 1 декември 2013.
Поврзани теми
[уреди | уреди извор]Надворешни врски
[уреди | уреди извор]- „Angles as turns: How can angles be negative?“ (англиски). 2003. Посетено на 1 декември 2013.
- „Angles (trigonometry)“. Math Open Reference. 2009. Посетено на 1 December 2013. interactive