Струјно коло: Разлика помеѓу преработките

Од Википедија — слободната енциклопедија
[проверена преработка][непроверена преработка]
Избришана содржина Додадена содржина
Нема опис на уредувањето
Ред 1: Ред 1:
{{Во изработка}}
{{Без извори|датум=август 2010}}
[[Податотека:Ohm's Law with Voltage source.svg|мини|десно|Просто струјно коло со извор и отпорник.]]
[[Податотека:Circuit elements mk.svg|мини|десно|300п|Елементи на едно струјно коло. Прикажани се и [[логички порти|логичките порти]].]]
'''Струјно коло''' или '''струен круг''' е затворена електрична врска помеѓу [[електричен елемент|електрични елементи]] низ кои тече [[електрична струја]]. Струјното коло во најмала мера мора да поседува барем еден извор на [[електромоторна сила]] (ЕМС) и [[проводник]] кој може да биде, во скоро сите случаеви и [[потрошувач]] ако поседува одредена [[електрична отпорност]].


[[Податотека:Ohm's Law with Voltage source.svg|мини|десно|Просто струјно коло со извор и отпорник. Тука важи, <math>V=iR</math>, според [[Омов закон|Омовиот закон]].]]
Колото мора да биде затворено за да се создаде напон меѓу двата краја на изворот на ЕМС, со цел да се случи протек на електричните полнежи меѓу краевите на изворот на ЕМС низ проводникот.


'''Струјно коло''' — мрежа која се состои од затворена јамка, овозмпжувајќи повратна патека за струјата. [[линиско коло|Линиските]] електрични кола, специјален вид кој се состои само од извори (напон или струја), линиски подредени елементи (отпорници,кондензатори, индуктори) и линиски распределени елементи (спроводници), имаат својство линиски да се [[суперпозиција|суперпозицираат]]. На тој начин полесно се разгледуваат, користејќи моќен [[фреквентен интервал]] како кај [[Лапласова трансформација|Лапласови трансформации]], за да се определи [[еднонасочна струја|еднонасочната струја]], [[наизменична струја|наизменичната струја]] и [[периодичен процес|периодичниот процес]].
{{Никулец од областа на електрониката}}

'''Отпорно коло''' — коло кое се состои само од отпорници и идеални струјни и напонски извори. [[Анализа на кола (електроника)|Анализата]] на отпорните кола е помалку сложена од анализата на колата кои содржат кондензатори и индуктори. Ако изворите се непроменливи т.е., извори на ([[еднонасочна струја]]), резултатот е [[коло на еднонасочна струја]].

Коло кое содржи [[активна компонента|активни]] [[електроника|електронски]] компоненти се нарекува ''[[електрично коло]]''. Ваквите кола се нелиниски и побаруваат посложена анализа и алатки.

==Класификација==

===По пасивност===
An active network is a network that contains an active source – either a [[voltage source]] or [[current source]].

A passive network is a network that does not contain an active source.

An active network contains one or more sources of [[electromotive force]]. It consists of active elements like a battery or a transistor. Active elements can inject power to the circuit, provide power gain, and control the current flow within the circuit.

Passive networks do not contain any sources of emf. They consist of passive elements like resistors and capacitors. These elements are not capable of the same functions as active elements.

===По линеарност===
A network is linear if its signals obey the principle of [[Superposition theorem|superposition]]; otherwise it is non-linear.

==Класификација на изворите==
Sources can be classified as independent sources and dependent sources

===Независни===
An ideal independent source maintains the same voltage or current regardless of the other elements present in the circuit. Its value is either constant (DC) or sinusoidal (AC). The strength of voltage or current is not changed by any variation in the connected network.

==Зависни===
[[Dependent source]]s depend upon a particular element of the circuit for delivering the power or voltage or current depending upon the type of source it is.

==Електрични закони==
A number of electrical laws apply to all electrical networks. These include:
*[[Kirchhoff's circuit laws#Kirchhoff's current law|Kirchhoff's current law]]: The sum of all currents entering a node is equal to the sum of all currents leaving the node.
*[[Kirchhoff's circuit laws#Kirchhoff's voltage law|Kirchhoff's voltage law]]: The directed sum of the electrical potential differences around a loop must be zero.
*[[Ohm's law]]: The voltage across a resistor is equal to the product of the resistance and the current flowing through it.
*[[Norton's theorem]]: Any network of voltage or current sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor.
*[[Thévenin's theorem]]: Any network of voltage or current sources and resistors is electrically equivalent to a single voltage source in series with a single resistor.
*[[superposition theorem]]: In a linear network with several independent sources, the response in a particular branch when all the sources are acting simultaneously is equal to the linear sum of individual responses calculated by taking one independent source at a time.

Other more complex laws may be needed if the network contains nonlinear or [[Reactance (electronics)|reactive]] components. Non-linear self-regenerative [[Heterodyne|heterodyning]] systems can be approximated. Applying these laws results in a set of [[simultaneous equations]] that can be solved either algebraically or numerically.

==Методи за осмислување==
{{Network analysis navigation}}
{{see also|Network analysis (electrical circuits)}}

To design any electrical circuit, either [[Analogue electronics|analog]] or [[Digital circuit|digital]], [[Electrical engineering|electrical engineers]] need to be able to predict the voltages and currents at all places within the circuit. Simple [[linear circuit]]s can be analyzed by hand using [[Complex number|complex number theory]]. In more complex cases the circuit may be analyzed with specialized [[computer program]]s or estimation techniques such as the piecewise-linear model.

Circuit simulation software, such as [[HSPICE]] (an analog circuit simulator),<ref>{{Cite web|url=http://web.stanford.edu/class/ee133/spice/HSpice.pdf|title=HSPICE|last=|first=|date=1999|website=HSpice|publisher=Stanford University, Electrical Engineering Department|access-date=}}</ref> and languages such as [[VHDL-AMS]] and [[verilog-AMS]] allow engineers to design circuits without the time, cost and risk of error involved in building circuit prototypes.

==Софтвер за симулација на кола==
More complex circuits can be analyzed numerically with software such as [[SPICE]] or [[GNU Circuit Analysis Package|GNUCAP]], or symbolically using software such as [[SapWin]].

===Линеаризација околу оперативна точка===
When faced with a new circuit, the software first tries to find a [[Steady state|steady state solution]], that is, one where all nodes conform to Kirchhoff's current law ''and'' the voltages across and through each element of the circuit conform to the voltage/current equations governing that element.

Once the steady state solution is found, the '''operating points''' of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with [[Gaussian elimination]].

===Кусолиниска приближност===
Software such as the [[PLECS]] interface to [[Simulink]] uses [[кусолиниска функција|piecewise-linear]] approximation of the equations governing the elements of a circuit. The circuit is treated as a completely linear network of [[Diode modelling#Mathematically idealized diode|ideal diode]]s. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time.

==Поврзано==
{{div col|20em}}
* [[Bridge circuit]]
* [[Digital circuit]]
* [[Circuit diagram]]
* [[Circuit theory]]
* [[Diode bridge]]
* [[Quiescent current]]
* [[Ground (electricity)]]
* [[Hydraulic analogy]]
* [[Electrical impedance|Impedance]]
* [[External electric load|Load]]
* [[Mathematical methods in electronics]]
* [[Memristor]]
* [[Netlist]]
* [[Network analyzer (electrical)]]
* [[Network analyzer (AC power)]]
* [[Open-circuit voltage]]
* [[LC circuit]]
* [[RC circuit]]
* [[RL circuit]]
* [[RLC circuit]]
* [[Lumped element model]] and [[distributed element model]]
* [[Potential divider]]
* [[Prototype filter]]
* [[Schematic]]
* [[Series and parallel circuits]]
* [[Short circuit]]
* [[Superposition theorem]]
* [[Topology (electronics)]]
* [[Continuity test]]
* [[Voltage drop]]
* [[Mesh analysis]]

{{div col end}}

==Наводи==
{{reflist}}


{{Нормативна контрола}}
{{Нормативна контрола}}

{{DEFAULTSORT:Струјно коло}}
[[Категорија:Електрична струја]]
[[Категорија:Струјни кола| ]]
[[Категорија:Струјни кола| ]]
[[Категорија:Електроинженерство]]
[[Категорија:Електроинженерство]]

Преработка од 18:04, 27 октомври 2017

Просто струјно коло со извор и отпорник. Тука важи, , според Омовиот закон.

Струјно коло — мрежа која се состои од затворена јамка, овозмпжувајќи повратна патека за струјата. Линиските електрични кола, специјален вид кој се состои само од извори (напон или струја), линиски подредени елементи (отпорници,кондензатори, индуктори) и линиски распределени елементи (спроводници), имаат својство линиски да се суперпозицираат. На тој начин полесно се разгледуваат, користејќи моќен фреквентен интервал како кај Лапласови трансформации, за да се определи еднонасочната струја, наизменичната струја и периодичниот процес.

Отпорно коло — коло кое се состои само од отпорници и идеални струјни и напонски извори. Анализата на отпорните кола е помалку сложена од анализата на колата кои содржат кондензатори и индуктори. Ако изворите се непроменливи т.е., извори на (еднонасочна струја), резултатот е коло на еднонасочна струја.

Коло кое содржи активни електронски компоненти се нарекува електрично коло. Ваквите кола се нелиниски и побаруваат посложена анализа и алатки.

Класификација

По пасивност

An active network is a network that contains an active source – either a voltage source or current source.

A passive network is a network that does not contain an active source.

An active network contains one or more sources of electromotive force. It consists of active elements like a battery or a transistor. Active elements can inject power to the circuit, provide power gain, and control the current flow within the circuit.

Passive networks do not contain any sources of emf. They consist of passive elements like resistors and capacitors. These elements are not capable of the same functions as active elements.

По линеарност

A network is linear if its signals obey the principle of superposition; otherwise it is non-linear.

Класификација на изворите

Sources can be classified as independent sources and dependent sources

Независни

An ideal independent source maintains the same voltage or current regardless of the other elements present in the circuit. Its value is either constant (DC) or sinusoidal (AC). The strength of voltage or current is not changed by any variation in the connected network.

Зависни=

Dependent sources depend upon a particular element of the circuit for delivering the power or voltage or current depending upon the type of source it is.

Електрични закони

A number of electrical laws apply to all electrical networks. These include:

  • Kirchhoff's current law: The sum of all currents entering a node is equal to the sum of all currents leaving the node.
  • Kirchhoff's voltage law: The directed sum of the electrical potential differences around a loop must be zero.
  • Ohm's law: The voltage across a resistor is equal to the product of the resistance and the current flowing through it.
  • Norton's theorem: Any network of voltage or current sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor.
  • Thévenin's theorem: Any network of voltage or current sources and resistors is electrically equivalent to a single voltage source in series with a single resistor.
  • superposition theorem: In a linear network with several independent sources, the response in a particular branch when all the sources are acting simultaneously is equal to the linear sum of individual responses calculated by taking one independent source at a time.

Other more complex laws may be needed if the network contains nonlinear or reactive components. Non-linear self-regenerative heterodyning systems can be approximated. Applying these laws results in a set of simultaneous equations that can be solved either algebraically or numerically.

Методи за осмислување

Предлошка:Network analysis navigation

To design any electrical circuit, either analog or digital, electrical engineers need to be able to predict the voltages and currents at all places within the circuit. Simple linear circuits can be analyzed by hand using complex number theory. In more complex cases the circuit may be analyzed with specialized computer programs or estimation techniques such as the piecewise-linear model.

Circuit simulation software, such as HSPICE (an analog circuit simulator),[1] and languages such as VHDL-AMS and verilog-AMS allow engineers to design circuits without the time, cost and risk of error involved in building circuit prototypes.

Софтвер за симулација на кола

More complex circuits can be analyzed numerically with software such as SPICE or GNUCAP, or symbolically using software such as SapWin.

Линеаризација околу оперативна точка

When faced with a new circuit, the software first tries to find a steady state solution, that is, one where all nodes conform to Kirchhoff's current law and the voltages across and through each element of the circuit conform to the voltage/current equations governing that element.

Once the steady state solution is found, the operating points of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with Gaussian elimination.

Кусолиниска приближност

Software such as the PLECS interface to Simulink uses piecewise-linear approximation of the equations governing the elements of a circuit. The circuit is treated as a completely linear network of ideal diodes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time.

Поврзано

Наводи

  1. „HSPICE“ (PDF). HSpice. Stanford University, Electrical Engineering Department. 1999.