Собирање: Разлика помеѓу преработките

Прејди на прегледникот Прејди на пребарувањето
Додаден 31 бајт ,  пред 10 години
с
r2.7.2) (Бот Додава: new:योगफल; козметички промени
с (r2.7.1) (Бот Додава: gl:Suma)
с (r2.7.2) (Бот Додава: new:योगफल; козметички промени)
[[Податотека:Addition01.svg|мини|десно|120п|3 + 2 = 5 претставен со [[јаболко|јаболка]]]]
 
'''Собирањето''' е [[аритметика|аритметичка операција]] со чија помош се наоѓа број кој содржи онолку единици колку што содржат двата или повеќе броја заедно.<ref>{{цитирана книга|last=Андреевски|first=Венцислав П.|title=Прирачник за математички поими и формули|publisher=Винсент графика|location=Скопје|date=2007|pages=54|chapter=3.2.1. Собирање|isbn=978-9989-2474-4-6}}</ref> Се означува со знакот „плус“ ('''+'''). На пример, на сликата десно има 3 + 2 јаболка — што значи три јаболка и уште две јаболка - исто што и пет јаболка. Затоа, 3 + 2 = 5. Освен броење на предмети, собирањето претставува здружување и на апстрактни величини како разни видови броеви: [[негативен број|негативни броеви]], [[дропка|дропки]], [[ирационален број|ирационални броеви]], [[вектор]]и, децимали и друго. Величините (броевите) што се собираат се нарекуваат '''собироци'''.
 
Операцијата собирање следи извесни правила. Тоа е [[комутативност|комутативно]], што значи дека редоследот не е важен и [[асоцијативност|асоцијативно]], што значи дека кога собираме повеќе од два броја, редоследот исто така не е важен. Постојаното собирање на бројот [[1 (број)|1]] сам со себе е исто што и [[броење]]. Собирањето со [[0 (број)|0]] не го менува бројот. Оваа операција исто така се поведува по правилата за сродните операции како [[одземање]]то и [[множење]]то. Сите овие правила можат да се [[доказ (математика)|докажат]], почнувајќи со собирањето на природни броеви, па воопштувајќи до [[реален број|реалните броеви]] и оние по нив. Општите [[бинарна операција|бинарни операции]] што ги продолжуваат овие шеми се изучуваат во [[апстрактна алгебра|апстрактната алгебра]].
Собирањето на поголеми броеви е олеснето со разни помагала, од древната [[сметалка]] (абакус), па сè до современиот [[сметач]].
 
== Својства ==
[[Податотека:AdditionComm01.svg|мини|десно|113п|4 + 2 = 2 + 4 со тули]]
=== Комутативност ===
 
Собирањето е [[комутативност|комутативно]] - собироците можат да ги променат своите места без тоа да влијае на збирот. Симболично претставено, ако ''a'' и ''b'' се некои два броја, тогаш
Комутативноста не важи за многу операции како одземањето и делењето.
 
=== Асоцијативност ===
[[Податотека:AdditionAsc.svg|мини|десно|100п|2+(1+3) = (2+1)+3 со жетони]]
Друго својство на собирањето е [[асоцијативност|aсоцијативностa]], кој се јавува кога групираме при собирање на повеќе броеви. Изразот
Ова својство не важи за сите операции: одземањето не е асоцијативно и затоа во тие случаи мора да се запази редоследот на операциите.
 
=== Нула ===
[[Податотека:AdditionZero.svg|мини|десно|70п|5 + 0 = 5 претставено како две вреќи со точки]]
Ако собираме било кој број со [[0 (број)|нула]], величината не се менува. Во собирањето, нулата е [[неутрален елемент]]. Симболично, за секое ''a'',
[[nah:Tlacempōhualiztli]]
[[nl:Optellen]]
[[new:योगफल]]
[[ja:加法]]
[[no:Addisjon]]

Прегледник