Реципрочна вредност

Од Википедија — слободната енциклопедија
Прејди на прегледникот Прејди на пребарувањето
Реципрочна функција y = 1/x. За секое x освен 0, y ја претставува неговата реципрочна вредност. Графиконот образува правоаголна хипербола.

Реципрочна вредност на број , што се означува со или , е број кој кога ќе се помножи со дава 1. Реципрочната вредност на дропката е . За да се добие реципрочна вредност на реален број, потребно е 1 да се подели со тој број. На пример, реципрочна вредност на бројот 5 е една петтина ( или 0,2), а реципрочната вредност на 0,25 е 1 поделен со 0,25, односно 4. Реципрочна функција, функција која го пресликува во , е еден од наједноставните примери на функција која сама по себе е инверзна.

За инверзна функција на функцијата понекога се користи нотацијата , што воопшто не е еднакво на реципрочната вредност. На пример, реципрочна вредност е косеканс од , а не е инверзен синус т.е. аркус синус на што се означува со или . Терминолошката разлика помеѓу реципрочната и инверзната вредност не е доволна за да се разликуваат овие две работи, бидејќи многу автори претпочитаат обратна конвенција за именување, веројатно од историски причини (на пример, на француски, инверзната функција се нарекува реципрочна биекција).

Комплексни броеви[уреди | уреди извор]

Реципрочна вредност на комплексен број различен од нула е исто така комплексен број. Се добива со множење и на броителот и на именителот на со неговиот конјугирано комплексен број и користење на особината дека , квадрирана апсолутна вредност , што е реален број :

Конкретно, ако = 1, тогаш .

За комплексен број во поларен облик , реципрочната вредност едноставно ја зема реципрочната вредност на интензитетот и негатив на аглите:

Инфинитезимално сметање[уреди | уреди извор]

Извод[уреди | уреди извор]

Извод на функцијата се дава врз основа на извод на степен на функција, каде што степенот е -1:

Интеграл[уреди | уреди извор]

Интегралот на функција на степен (квадратна формула на Кавалиери) не може да се користи за пресметување на интегралот , бидејќи тоа би довело до делење со нула:

.

Наместо тоа, интегралот се пресметува со

каде е природен логаритам. За да се покаже ова, треба да се земе предвид дека е , па ако е и , имаме:[1]

Поврзано[уреди | уреди извор]

Наводи[уреди | уреди извор]

  1. Dr., Anthony. „Proof that INT(1/x)dx = lnx“. mathforum.org. Посетено на 02. 10. 2018.. Проверете ги датумските вредности во: |accessdate= (help)