Надолжен бран
Надолжен бран (лонгитудитален бран) — бран каде вибрацијата на средината е напоредна на насоката во која патува бранот и поместувањето на средината е во иста (или спротивна) насока на тоа патување. Механичките надолжни бранови се нарекуваат и набивни бранови бидејќи предизвикуваат збивање и проретчување кога минуваат низ средината, а притисочни бранови бидејќи прават покачување или намалување на притисокот. Добра нагледна претстава е бранот долж истегната пружина, каде растојанието меѓу навоите се зголемува и намалува. Примери за ова се звучните бранови (вибрации во притисок, поместување на честички и честична брзина на патување во растеглива средина) и сеизмичките P-бранови (предизвикани од земјотреси и експлозии).
Друг главен вид на бран е попречниот бран, каде поместувањата на средината се нормални на насоката на брановото патување. На пример, попречните бранови опишуваат некои обемни звучни бранови во цврсти материјали (но не во флуиди); тие се нарекуваат „смолкнувачки бранови“ за да се разликуваат од (надолжните) притисочни бранови кои исто така се јавуваат во овие материјали.
Звучни бранови
[уреди | уреди извор]Кај надолжните хармониски звучни бранови, честотата и брановата должина може да се опише со формулата
каде:
- y е поместувањето на точка во патувачкиот звучен бран;
- x е растојанието од точката до изворот на бранот;
- t е изминатото време;
- y0 е замавот на колебањата,
- c е брзината на бранот; и
- ω е аголната честота на бранот.
Величината x/c е времето потребно бранот да помине растојание x.
Обичната честота (f) на бранот е
Брановата должина може да се пресмета како односот помеѓу брановата брзина и обичната честота.
Кај звучните бранови, замавот е разликата помеѓу притисокот на незасегнатиот воздух и најголемиот притисок предизвикан од бранот.
Брзината со која патува звукот зависи од видот, температурата и составот на средината низ која тој поминува.
Притисочни бранови
[уреди | уреди извор]Гореприкажаната равенка за звук во флуиди важи и за акустични бранови во растеглива цврста материја. Иако во цврстите тела може да има и попречни бранови (наречени S-бранови во сеизмологијата), надолжните звучни бранови во цврстите материи се јавуваат во брзината и бранова импеданса зависно од густината на материјалот и неговата крутост, од кои второто е опишано (како звук во гас) од модулот на збивливост на материјалот.[1]
Во мај 2022 г. НАСА известила за сонификација (претворање на астрономски податоци за притисочни бранови во звук) на црна дупка во средиштето на галактичкото јато Персеј.[2][3]
Електромагнетика
[уреди | уреди извор]Максвеловите равенки водат до предвидување на електромагнетните бранови во вакуум, кои се строго попречни бранови поради тоа што им треба честички кои би ги вибрирале. Нивните електрични и магнетни полиња од кои се состои бранот се нормални на насоката на брановото движење.[4] Меѓутоа, плазмените бранови се надолжни бидејќи тие не се електромагнетни, туку густински бранови од наелектризирани честички, но кои можат да се спојат во електромагнетното поле.[4][5][6]
По обидите да ги воопшти Максвеловите равенки, Оливер Хевисајд заклучил дека електромагнетните бранови не можат да се сретнат како надолжни бранови во „слободен простор“ или еднородни средини.[7] Максвеловите равенки, како што денес ги разбираме, го задржуваат тој заклучок: во слободнопросторни или други еднородни изотропни диелектрици, електромагнетните бранови се строго препречни. Сепак, електромагнетните бранови може да имаат надолжна составница во електрични и/или магнетни полиња кога минуваат низ дволомни материјали или нееднородни материјали, особено на границите (на пример, површинските бранови) како Зенековите бранови.[8]
Со развојот на современата физика, Александру Прока (1897-1955) осмислил релативистички равенки за квантното поле наречени по него (Прокини равенки) кои важат за масивни векторски мезони со спин 1. Во поново време некои теретичари како Жан Пјер Вижје и Бо Ленерт ја примениле Прокината равенка во обид да ја покажат фотонската маса[9] како надолжна елетромагнетна составница на Максвеловите равенки, предлагајќи дека надолжните електромагнетни бранови можат да постојат во Дираков поларизиран вакуум. Меѓутоа, речиси сите физичари не веруваат во фотонската маса во мирување, и истата не е во склад со стандардниот модел на физиката.
Поврзано
[уреди | уреди извор]Наводи
[уреди | уреди извор]- ↑ Weisstein, Eric W., "P-Wave". Eric Weisstein's World of Science.
- ↑ Watzke, Megan; Porter, Molly; Mohon, Lee (4 мај 2022). „New NASA Black Hole Sonifications with a Remix“. NASA. Посетено на 11 мај 2022.
- ↑ Overbye, Dennis (7 мај 2022). „Hear the Weird Sounds of a Black Hole Singing - As part of an effort to "sonify" the cosmos, researchers have converted the pressure waves from a black hole into an audible … something“. The New York Times. Посетено на 11 мај 2022.
- ↑ 4,0 4,1 David J. Griffiths, Introduction to Electrodynamics, ISBN 0-13-805326-X
- ↑ John D. Jackson, Classical Electrodynamics, ISBN 0-471-30932-X.
- ↑ Gerald E. Marsh (1996), Force-free Magnetic Fields, World Scientific, ISBN 981-02-2497-4
- ↑ Heaviside, Oliver, "Electromagnetic theory". Appendices: D. On compressional electric or magnetic waves. Chelsea Pub Co; 3rd edition (1971) 082840237X
- ↑ Corum, K. L., and J. F. Corum, "The Zenneck surface wave", Nikola Tesla, Lightning Observations, and stationary waves, Appendix II. 1994.
- ↑ Lakes, Roderic (1998). „Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential“. Physical Review Letters. 80 (9): 1826–1829. Bibcode:1998PhRvL..80.1826L. doi:10.1103/PhysRevLett.80.1826.