Гравитациска константа

Од Википедија, слободната енциклопедија
Прејди на: содржини, барај
Гравитациската константа G е клучна величина во Њутновиот закон за гравитација.

Гравитациската константа (G) е емпириска физичка константа involved in the calculation of the гравитациското привлекување помеѓу телата што имаат маса. Константата фигурира во Њутновиот законот за сеприсутната гравитација и Ајнштајновата теорија на општиот релативитет. Затоа е позната како универзална гравитациска константа или Њутнова константа. Ова не е исто што и g, што ја претставува локалната Земјина тежа (истоветна со забрзувањето при слободен пад[1]).

Согласно Њутновиот закон за гравитација, силата на привлекување (F) помеѓу две тела е правопропорционална на производот од нивните маси (m1 и m2), и обратнопропорционална на растојанието помеѓу нив (r) дигнато на квадрат:

F = G \frac{m_1 m_2}{r^2}\

Константата на пропорционалност, G, е гравитациската константа.

Од сите физички константи, гравитациската константа е најтешко да се измери прецизно.[2] Во SI единици, (со стандардната неодреденост во загради) изнесува:[3]

 G = 6,67384(80) \times 10^{-11} \ \mbox{m}^3 \ \mbox{kg}^{-1} \ \mbox{s}^{-2} = 6,67384(80) \times 10^{-11} \ {\rm N}\, {\rm (m/kg)^2}

со релативна стандардна неодреденост од 1,2×10−4
,[3] или 1 дел од 8300.

Димензии, единици и величини[уреди]

Зададените димензии на гравитациската константа во горенаведената равенка (должината на куб, поделена со масата и времето на квадрат) наоѓаат широка примена во равенките за гравитација. Меѓутоа овие димензии имаат фундаментално значење кога се изразени во Планкови единици: изразена во SI единици, гравитациската константа е димензионално и бројчено еднаква на кубот на Планковата должина поделена со Планковата маса и Планковото време на квадрат.

Кај природните единици, чиј најдобар пример се Планковите единици, G и другите физички константи како c (брзината на светлината) може да се сметаат за еднакви на 1.

Во многу учебници, димензите на G се изведени од сила за полесно сфаќање:

 G \approx 6,674 \times 10^{-11} {\rm \ N}\, {\rm (m/kg)^2}.

Во СГС, G може да се претстави како:

 G\approx 6,674 \times 10^{-8} {\rm \ cm}^3 {\rm g}^{-1} {\rm s}^{-2}.

G може да се претстави и како:

 G\approx 0,8650 {\rm \ cm}^3 {\rm g}^{-1} {\rm hr}^{-2}.

Доколку периодот P на објект во кружна орбита околу сферен објект се поведува по

 GM=3\pi V/P^2

каде V е волуменот во радиусот на орбитата, па затоа оттука гледаме дека

 P^2=\frac{3\pi}{G}\frac{V}{M}\approx 10,896 {\rm\ hr}^2 {\rm g\ }{\rm cm}^{-3}\frac{V}{M}.

Овој начин на изразување на G го покажува односот помеѓу просечната густина на една планета и орбиталниот период на сателит што кружи над површината.

Во некои полиња на астрофизиката, каде растојанијата се изразуваат во парсеци, G се изразува со брзина во километри во секунда (km/s), а масата во сончеви единици (M_\odot):

 G \approx 4,302 \times 10^{-3} {\rm \ pc}\, M_\odot^{-1} \, {\rm (km/s)}^2. \,

Поврзано[уреди]

Портал „Физика

Белешки[уреди]

  1. Fundamentals of Physics 8ed,Halliday/Resnick/Walker,ISBN 978-0-470-04618-0 стр. 336
  2. George T. Gillies (1997), „The Newtonian gravitational constant: recent measurements and related studies“, „Reports on Progress in Physics“ 60 (2): 151–225, doi:10.1088/0034-4885/60/2/001, Bibcode1997RPPh...60..151G, http://www.iop.org/EJ/abstract/0034-4885/60/2/001 
  3. 3,0 3,1 P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). база: J. Baker, M. Douma, and S. Kotochigova. пристап: http://physics.nist.gov/constants - NIST, Gaithersburg, MD 20899.

Наводи[уреди]

Надворешни врски[уреди]