Декаден броен систем

Од Википедија — слободната енциклопедија
Прејди на: содржини, барај
Бројни системи кај разни народи и култури
Индоарапски бројки
Западноарапски
Источноарапски
Индиско семејство
Бурмански
Кмерски
Монголски
Тјаландски
Источноазиски бројки
Јапонски
Кинески
Суџоу
Корејски
Виетнамски
Стапчиња
Азбучни бројки
Абџадски
Арјабатини
Ерменски
Етиопски
Грчки
Кирилични
Хебрејски
Други системи
Егејски
Атички
Вавилонски
Брамански
Египетски
Етрурски
Ескимски
Мајански
Кипу
Римски
Поле со урни
Положбени системи по основа
Декадни (10)
1, 2, 3, 4, 5, 6, 8, 12, 16, 20, 30, 36, 60 повеќе…
Разни стилови на претставување на „арапските бројки“

Декадниот систем (наречен и децимален систем) е броен систем кој како основа го има бројот 10[1] и претставува најзастапениот броен систем во светот.[2][3]

Декаден запис (децимална нотација) честопати се однесува на положбениот запис со основа 10 како што се познатите индоарапски бројки; покрај ова, може да се однесува поопшто и на неположбените системи како римскиот и кинескиот, кои исто така се на основа 10.

Децимали се однесуваат и на декадните (децимални) дропки, било посебно или наспроти простите дропки. Во овој контекст, децималата е десетти дел од нешто, т.е. последоватални десетки од една целина.

Декаден запис[уреди]

Декаднниот запис е претставување на бројките во броен систем на основа 10. Такви примери се римските, брамските и кинеските, како и индоарапските бројки што се користат во европските јазици. Римските бројки имаат симболи за декадните множители (1, 10, 100, 1000) и помошни симболи за нивните половини (5, 50, 500). Брамските имаат симболи за девет броја (1–9), девет десетки (10–90) и симболи за 100 и 1000. Кинеските имаат симболи за 1–9 и дополнителни симболи за степени на 10, што денес достигнуваат 1044.

Меѓутоа, кога оние што користат индоарапски бројки зборуваат за декаден запис, тие не го подразбираат само гореопишаниот декаден запис, туку и декадните дропки - сите претставени како дел од положбениот систем. Положбените декадни системи имаат нула и користат симболи (наречени цифри) за десетте вредности (0, 1, 2, 3, 4, 5, 6, 7, 8, и 9) за претставување на било кој број, без оглед на неговата големина. Со нив се користи и децимална запирка која го означува почетокот на дробниот дел, како и симболите за позитивност и негативност (+ и −) пред бројот за да се означи дали тој е поголем или помал од нула.

Положбениот запис ја претставува секоја десеткратност со по едно место: единици, десетки, стотки, илјадарки и тн. Положбата на секоја цифра во рамките на бројот го означува множителот (десеткратноста) помножен со таа цифра—секоја положба има вредност десетпати поголема од следната десно од неа. Постојат барем два независни извори за потеклото на положбениот систем: кинеските стапчиња за сметање и индоарапскиот систем (кој потекнува од брамскиот).

Најверојатно е дека логиката на системот се десетте прсти на рацете, на кои броеле првобитините цивилизации.

Цифрите што денес се користат ширум светот се нарекуваат „арапски“ меѓу Европјаните и „индиски“ кај Арапите (бидејќи Европјаните го научиле од Арапите, а самите Арапи од Индијците). Постои разлика во симболите на цифрите: западноарапските (од кои потекнуваат европските) изледаат речиси сосем различно од оние во сите други арапски предели (заклучно со официјалните во арапското писмо).

Декадни дропки[уреди]

Декадна дропка (децимална дропка) е дропка чиј именител е десеткратен.

Декадните дропки се изразуваат без именител, туку со вметнување на децималната запрка во броителот (со или без почетна нула) во местото оддесно што одговара на дадената десеткратност на именителот: 8/10, 83/100, 83/1000 и 8/10000 се изразуваат како 0,8, 0,83, 0,083 и 0,0008. Англофонските, азиските и многу латиноамерикански земји користат точка (.) или подигната точка () наместо запирка.

Целобројниот дел на децималниотброј стои лево од запирката. Десно од запирката е остатокот (дробнниот дел). Кога се претставува како посебен број, вредноста се пишува со почетна нула. Од особена важност кај негативните броеви е разликувањето на дробниот дел на записот од дробниот дел на самиот број, бидејќи второспоменатиот има свој децимален симбол. Вообичаено е децималните броеви со апсолутна вредност помала од еден да имаат почетни нули.

Завршните нули на десната страна на децималната запирка не се неопходни, туку во науката и техниката служат за да искажат прецизност: иако 0,080 и 0,08 се бројчено исти, во инженерството 0,080 укажува на утврдена вредност со можна грешка од еден на две илјади (±0,0005), додека 0,08 укажува на вредност со можна грешност од еден на двеста.

Декадно сметање[уреди]

Декадното сметање во древното минато се вршело на најразлични начини: со стапчиња, на песочни табели или со сметалки.

Машинските и програмските системи на современите сметачи користат бинарно претставување на вредностите за внатрешно работење, но многу од првобитните сметачи како ENIAC и IBM 650 го применувале декадниот систем насекаде.[4] За потребите на информатичарите, бинарната претстава се претвора во сродниот октален или хексадецимален систем. Корисниците гледаат и внесуваат само декадни вредности кои системот ги претвора од/во бинарна претстава,

Складирањето на децималните вредности и аритметичките пресметки кај сметачите се врши и декадно, најчесто кај податоците во облик на бинарно-шифрирани декадни броеви,[5] што се применуваат кај базите на податоци, но се користат и други декадни претстави (како што е новиот стандард IEEE 754 за аритметичко работење со променлива децимално место).[6]

Декадната аритметика им дава на сметачите можност да дојдат до резултати со декадни дропки кои инаку не се изводливи со бинарна претстава. Ова е од особено значење за пресметките во финансовото работење и во техниката.[7]

Историја[уреди]

Реконструирана римска сметалка

Многу древни култури уште од најстаро време почнале да сметаат со десетични бројки: почнувајќи од 3000 п.н.е. египетски хиероглифи користеле чисто декаден систем.[8][9] Истото важи и за критските хиероглифи (~ 1625−1500 п.н.е.) на Минојците, чии бројки се по терк на египетските.[10][11] Декадниот систем последователно се пренесувал на разни егејски култури од бронзеното време како оние што го линеарното писмо А (~ XVIII век п.н.е.−1450 п.н.е.) и линеарното писмо Б (~ 1375−1200 п.н.е.). Бројниот систем во класична Грција и Рим исто така бил десетичен, со дополнителна меѓуоснова 5.[12] Подоцна Архимед (~ 287–212 п.н.е.) осмислува декаден положбен систем на основа 108 со голем потенцијал за кој тој не бил свесен.[12] Многу векови подоцна, германскиот математичар Карл Фридрих Гаус изразил жалење за ова и сметал дека науката би била многу понапред во неговото време ако Архимед ги увидел докрај сите можности на овој генијален изум.[13] Хетитските хиероглифи (од XV век п.н.е.) биле строго декадни, исто како нивните египетските и староегејските пандани.[14]

Египетските, старогрчките, римските, кинеските и првобитните индиски системи биле неположбени и затоа користеле голем број на симболи. На пример, египетските бројки има различни симболи за 10, 20 до 90, 100, 200 до 900, 1000, 2000, 3000, 4000 до 10.000.[15]

Посебен случај се кириличните бројки од старословенското писмо се посебен случај по тоа што се „квазидекадни“.

Поврзано[уреди]

Наводи[уреди]

  1. систем „декаден систем“ — Лексикон на македонскиот јазик на оф.нет
  2. The History of Arithmetic, Louis Charles Karpinski, Rand McNally & Company, 1925.
  3. Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994 (Also: The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Прев. на англиски David Bellos, E.F. Harding, Sophie Wood and Ian Monk)
  4. Fingers or Fists? (The Choice of Decimal or Binary Representation), Werner Buchholz, Communications of the ACM, Том 2 #12, стр. 3–11, ACM Press, декември 1959.
  5. Decimal Computation, Hermann Schmid, John Wiley & Sons 1974 (ISBN 047176180X); reprinted in 1983 by Robert E. Krieger Publishing Company (ISBN 0898743184)
  6. Decimal Floating-Point: Algorism for Computers, Cowlishaw, M. F., Proceedings 16th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-1894-X, стр. 104-111, IEEE Comp. Soc., јуни 2003
  7. Децимална аритметика - ЧПП (англиски)
  8. Египетски бројки (англиски)
  9. Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, стр. 200-213
  10. Graham Flegg: Numbers: their history and meaning, Courier Dover Publications, 2002, ISBN 978-0-486-42165-0, стр. 50
  11. Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, стр. 213-218
  12. 12,0 12,1 Старогрчки бројки (англиски)
  13. Menninger, Karl: Zahlwort und Ziffer. Eine Kulturgeschichte der Zahl, Vandenhoeck und Ruprecht, III изд, 1979, ISBN 3-525-40725-4, стр. 150-153
  14. Georges Ifrah: From One to Zero. A Universal History of Numbers, Penguin Books, 1988, ISBN 0-14-009919-0, стр. 218f
  15. Lam Lay Yong et al The Fleeting Footsteps стр. 137-139

Надворешни врски[уреди]