Податотека:RoundTripToVega.gif

Содржината на страницата не е поддржана на други јазици.
Од Википедија — слободната енциклопедија

RoundTripToVega.gif(425 × 165 пиксели, големина: 520 КБ, MIME-тип: image/gif, кружно, 51 кадар, 51 с)

Врска до Ризницата Ова е податотека од Ризницата на Викимедија и може да се користи на други проекти. Подолу е наведена содржината на нејзината описна страница.
Заедничката ризница е складиште на слободно-лиценцирани слики и снимки. И Вие можете да помогнете.

Опис

Опис
English: The local nature of time: Four clocks on a 1-gee constant proper-acceleration round-trip shuttle to and from Vega 25 lightyears away, as seen from the ship's point of view. The one-way trip takes about 6.6 traveler years and about 27 map years, with turn-around points for the ship's proper-acceleration/deceleration halfway between earth and Vega.

Although the earth-clock (whose concurrent value on the left clock-face is obtained unambiguously from a radar-time calculation) and the local map-clocks (right clock-face) are synchronized from the earth's point of view, they are only synchronized from the ship's point of view when our ship is docked, either at home (blue dot) or at Vega (green dot).

Inspired by clocks on the spaceship wall in a sci-fi novel[1], this animation also illustrates the relativity of simultaneity in a less abstract way than is usually done with help from constant-speed (Lorentz-transform) models that allow neither acceleration nor curved-spacetime. In this case the extended-simultaneity model used for the two "distant-location clocks" on each end is the much more robust radar-time model discussed by Dolby and Gull[2].

The faded red clock hands on the Sol and Vega clocks show "tangent free-float-frame" time rates of change, which require a moving frame of synchronized clocks embedded in flat spacetime. The green dashed lines correspond to past events on the corresponding "far-away" clock which we've not yet detected, while the green dotted lines correspond to future events there on which our subsequent actions can have no effect.

The green shaded regions therefore correspond to a "causality gap" of events on that clock from which we are presently isolated. For most practical purposes, therefore, "present" time on that clock might be imagined to be anywhere in the shaded region.
Датум
Извор сопствено дело
Автор P. Fraundorf

Added notes

This animation also highlights an unavoidable property of far-away events in space-time, since the direction of your world-line matters: When on your clock a far-away event happens is not set in stone until such time as light-rays from that event have the chance to reach you. As a result the readings on the far-away clocks above (on either end of the animation) depend on the assumption that the voyage will continue as planned.

Equation appendix

The figure was drawn using Mathematica. At some point we may add code here to construct a roundtrip to any destination that you like. First, however, some notes on the relationships used are provided here.

the trajectory

Let's start by imagining that our traveler starts from rest at xo=c2/α, to=0, and the trip is divided into quarters. The first quarter involves acceleration rightward, the second two quarters involve acceleration leftward before and after a destination event at {2xc, 2tc}, while the fourth involves acceleration rightward again to bring the traveler to rest back home.

First take a look the velocity-measure most simply connected to acceleration, namely hyperbolic velocity angle or rapidity η, as a function of traveler-time τ and the quarter round-trip turn-around time τc:

.

This is useful because rapidity in turn relates simply to other speed measures in (1+1)D, including proper-velocity w ≡ dx/dτ = c sinh[η], coordinate-velocity v ≡ dx/dt = c tanh[η], and Lorentz-factor γ ≡ dt/dτ = cosh[η]. Hence we can integrate them to determine map-time elapsed and distance traveled. In perhaps simplest form, the resulting integrals for each constant proper-acceleration segment may be written as:

.

The map-trajectory for galactic-coordinates {x,t}, parameterized using traveler time τ and the quarter round-trip turn-around time τc, looks something like:

,

and

.

Here tc ≡ (c/α)sinh[ατc/c] and xc ≡ (c2/α)(cosh[ατc/c]-1) are galactic map-coordinates for the first turn-around event at traveler-clock time τc. In terms of the destination distance xd = 2xc on the galactic map, this second equation suggests that the total roundtrip time on traveler-clocks is Δτround ≡ 4τc = 4(c/α)acosh[1+(α/c2)xd/2]. Does that look right?

causality-gap

For the A and B destinations at the left and right ends (respectively) of the shuttle's oscillation, the causality limits look something like:

, and
.

Of course centered in this causality-gap is the local map-time t[τ].

tangent-fff equations

The tangent free-float-frame time of events for a star along our trajectory at the A and B positions may look something like:

, and
.

This equation arises because -1 ≤ tanh[η] ≤ +1 is dt/dx for fixed time-isocontours associated with an extended frame of yardsticks and synchronized clocks which is moving relative to the fixed axes of an x-ct plot in flat spacetime.

radar-separation equations

We discuss these with c=1 and α=1 to minimize sprawl. In all for a constant proper-acceleration roundtrip there are four function changes, 5 intervals, and thus 5×5=25 zones involved. The plan for each of these 25 zones is to solve radar time τ[t,x] ≡ ½(τ+[t,x]+τ-[t,x]) = τo where τ+[t,x] solves u=uB+] and τ-[t,x] solves v=vB-]. These in turn have been used (e.g. here) to plot radar isochrons and radar-distance grid lines for proper time/distance intervals of 0.2c2/α for all 25 zones is an x-ct diagram's field of view.

Using the linked example figure, for example working our way up from the magenta-shaded 00 zone at the bottom center of the traveler world line, we get for the radar isochrons:

,

and for the radar-distance contours in the same zones:

.

To create the plot above, similar functions are needed for all 25 hk zones, where h={0,1,2,3,4} and k={0,1,2,3,4}.

The twelve zones 01, 02, 03, 10, 14, 20, 24, 30, 34, 41, 42 and 43 may require the principal value (0th branch) of the Lambert W or product log function defined implicitly by z = WeW, namely

The remaining eight zones, namely 04, 12, 13, 21, 23, 31, 32, and 40, can be written out explicitly.

Footnotes

  1. Mary Doria Russell (2008) The Sparrow (Random House, NY).
  2. Carl E. Dolby and Stephen F. Gull (2001) "On radar time and the twin paradox", Amer. J. Phys. 69 (12) 1257-1261 abstract.

Лиценцирање

Јас, праводржецот на ова дело, со ова го објавувам истото под следнава лиценца:
w:mk:Криејтив комонс
наведи извор сподели под исти услови
Можете:
  • да споделите – да го умножувате, распространувате и емитувате делото
  • да преработувате – да преработувате
Под следните услови:
  • наведи извор – Ќе мора да дадете прикладен припис, да ставите врска до лиценцата и да укажете дали има направено промени. Ова може да биде направено на било кој разумен начин, но без да оддава впечаток дека лиценцодавецот стои зад Вас и Вашата употреба.
  • сподели под исти услови – Ако го измените или преобразите делото, или пак ако основате друго дело на него, добиеното дело (придонесот) морате да го распространувате (објавувате) само под истата или складна лиценца на изворната.

Описи

Опишете во еден ред што претставува податотекава

Предмети прикажани на податотекава

прикажува

16 мај 2014

Историја на податотеката

Стиснете на датум/време за да ја видите податотеката како изгледала тогаш.

Датум/времеМинијатураДимензииКорисникКоментар
тековна22:20, 19 јануари 2016Минијатура на верзијата од 22:20, 19 јануари 2016425 × 165 (520 КБ)UnitsphereAdd thrust-reversal dots on the ship clock, and correct the tangent-fff arrow dynamics.
17:25, 18 јануари 2016Минијатура на верзијата од 17:25, 18 јануари 2016425 × 165 (519 КБ)UnitsphereAdded "causality windows" to the Sol and Vega clocks.
14:21, 28 август 2014Минијатура на верзијата од 14:21, 28 август 2014425 × 165 (477 КБ)UnitsphereAdd a fourth clock to show symmetry in origin and destination "far-away" times.
02:28, 17 мај 2014Минијатура на верзијата од 02:28, 17 мај 2014360 × 183 (493 КБ)UnitsphereUser created page with UploadWizard

Податотекава се користи во следнава страница:

Глобална употреба на податотеката

Оваа податотека ја користат и следниве викија:

Метаподатоци